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My research interests lie at the intersection of algebra and combinatorics. I am particularly
interested in problems related to positivity phenomena in algebraic combinatorics, representation
theory, cluster algebras. My studies are centered around inequalities arising from real algebraic
geometry and tropical geometry which I aim to understand from combinatorial and computational
complexity viewpoint. The list of my main projects includes:

1. Equalities and inequalites for balanced producs of Schur functions. In the joint
work with I. Pak [47], we study Schur positivity of the difference of products of two skew Schur
functions. Many special cases of this problem has been wide open for decades. Inspired by the
theory of Temperley–Lieb immanants, we introduce balanced products, and give sufficient con-
ditions for both Schur positivity and equality in this case. Applications include properties of
the largest Littlewood–Richardson coefficients, a combinatorial interpretation of the defect of the
Lam–Postnikov–Pylyavskyy inequality [36, Theorem 5], and proof of the Fomin–Fulton–Li–Poon
conjecture [18, Conjecture 5.1] in the balanced case.

2. Bounded ratios for Lorentzian matrices. With D. Huang, J. Huh and B. Wang [12]
we study multiplicative inequalities among entries of Lorentzian matrices through the notion of
bounded ratios. These inequalities significantly generalize the classical Alexandrov–Fenchel and re-
verse Khovanskii–Teissier inequalities for mixed volumes. Based on Gromov’s δ-hyperbolic metrics,
we show that the cone of bounded ratios for Lorentzian matrices is the dual cone of the cut cone,
a well-studied object in metric geometry, graph theory, and optimization [11]. In the case n = 3,
we determine the optimal bounding constants on the entire cone, obtaining a closed formula with
an entropy-like form. We conjecture that bounded ratios have a subtraction-free property which
suggests a promising link between cluster algebras and Lorentzian polynomials and matroids.

Results on bounded ratios is a featured topic in Arbeitsgemeinschaften at Oberwolfach, Oct. 2025.
3. Description of multiplicative determinantal inequalities for totally positive matri-

ces. The problem of description of multiplicative determinantal inequalities of minors was stated
by S. Fallat and C. Johnson in [14] through the notion of bounded ratios. With M. Gekhtman
[51], we show that the set of bounded ratios is finitely generated for any dimension and provide
examples of new non-primitive generators which disprove Fallat–Gekhtman–Johnson characteriza-
tion conjecture. With Z. Greenberg and M. Gekhtman [27] we found the full list of generators for
Gr(4, 8).

4. Bounded Laurent monomials in cluster variables on the positive loci. We extend the
problem of description of multiplicative determinantal inequalities to all cluster variables. We show
in [27] that for the full rank finite type cluster algebras the generators of these set are in bijection
with mutable cluster variables and are of the form y

1+y
, where y is a y-coordinate associated to a

source in fully sources/sink orientation of the associated Dynkin diagram D in the exchange graph
of the cluster algebras. In fact, the above set of generators corresponds to u-variables of cluster
configuration algebra UD defined in [3] by N. Arkani-Hamed, S. He, and T. Lam.

5. Hadamard products of dual Jacobi–Trudi matrices. With R. Angarone, J. S. Kim,
J. Oh we study positivity properties of Hadamard products of Jacobi–Trudi matrices [48]. A. Sokal
conjectured that Wagner’s theorem [55] on total positivity of Hadamard product of triangular
Toeplitz matrices can be strengthened to total monomial positivity for the Hadamard product of
Jacobi–Trudi matrices. We show that Temperley–Lieb immanants are Schur positive for Hadamard
products of Jacobi–Trudi matrices given by ribbon-like skew partitions. In particular, we affirm
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Sokal’s conjecture for minors given by ribbon-like skew partitions. Moreover, we provide a manifestly
positive Schur expansion for the Hadamard product of Jacobi–Trudi matrices indexed by ribbons.

6. Majorizing monotonisity of Symmetrized Fischer’s products for totally nonneg-
ative matrices. A large class of determinantal inequalities is known to hold both for totally
nonnegative matrices (TNN) and hermitian positive semidefinite matrices (HPSD). The classical
examples are Hadamard-Fischer-Koteljanskii inequalities. W. Barrett and C. Johnson have proved
that these inequalities can be generalized for the averages of certain products of minors of HPSD
matrices [5]. We have shown in our joint work with M. Skandera that Barrett-Johnson inequalities
hold for TNN matrices as well [50].

7. Plücker inequalities for weekly-separated coordinates in totally nonnegative
Grassmanninan. In the join project with P. Vishwakarma [52] we have shown that the par-
tial sums of Plücker relations form a family of nonnegative functions on the nonnegative part of
Grassmannian for any two weekly-separated Plücker coordinates. This result connects several fun-
damental objects such as cluster algebra of a Grassmannian Gr(k, n), long Plücker relations and
Temperley-Lieb immanants.

1 Positivity phenomena and cluster algebras

Totally positive (nonnegative) matrix is matrix with real entries such that all its minors are posi-
tive (nonnegative). We denote these matrices as TP and TNN respectively. Total positivity arose
initially in few different areas. It was studied by Gantmacher and Krein in oscillations of vibrating
systems [25], by Schoenberg in applications to analysis of real roots of polynomials and spline func-
tions [1]. TP and TNN matrices play important role in algebraic and enumerative combinatorics,
integrable systems, probability, classical mechnics, and many other areas, see [2], [26], [15] and
references therein. Lusztig extended the notion of total positivity to reductive Lie groups G [43],
where totally nonnegative part G⩾0 of G is a semialgebraic subset of G generated by Chevalley
generators. G⩾0 is subset of G where all elements of dual canonical basis are nonnegative [42].
This concept could be generalized even further to varieties V. Totally nonnegative subvariety is
defined as a subset of V where certain regular functions on V have nonnegative values [30], [6],
[19]. Lusztig proved that specialization of elements of the dual canonical basis in representation
theory of quantum groups at q=1 are totally nonnegative polynomials. Thus, it is important to
investigate classes of functions on varieties that attain positive values on positive subvarieties. I
will discuss several sources of such functions later.

A natural question is to describe the minimal subsets of minors which are sufficient to test for
positivity in order to guarantee that the matrix is TP [20]. This question was one of the main
motivations for the cluster algebras theory initially introduced by Fomin and Zelevinsky [21]. It
turns out that for a n × n matrix there are multiple clusters of n2 minors such that positivity of
minors in any fixed cluster ascertains that the matrix is TP. The key role in total positivity test
is played by the Laurent phenomenon [22], that is every minor of the matrix can be expressed as
a subtraction-free Laurent polynomial in minors of any fixed cluster. Subtraction-free expressions
are expressions involving no negative signs. Since then theory of cluster algebras found application
in a plethora of different branches of mathematics such as representation theory of quivers and
finite-dimensional algebras [9], [38], discrete dynamical systems based on rational recurrences and
Y -systems in the thermodynamic Bethe Ansatz [23], [29],[28], higher Teichmüller spaces [37], [17],
Poisson geometry and theory of integrable systems [30].

Multiplictive determinantal inequalities through the notion of bounded ratios. A
large list of inequalities hold for TNN matrices and HPSD matrices. Hadamard [31] showed that
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for A HPSD we have
det(A) ⩽ a1,1 · · · an,n, (1.1)

and Koteljanskii [34], [35] showed that this holds for A TNN as well. Marcus [44] proved a perma-
nental analog

per(A) ⩾ a1,1 · · · an,n (1.2)

for A HPSD, and this analog clearly holds for A TNN as well. Fischer [16] strengthened (1.1) by
showing that for all I ⊆ [n] we have

det(A) ⩽ det(AI,I) det(AIc,Ic), (1.3)

and Ky Fan showed that this holds for A TNN as well (unpublished; see [10]). Lieb [40] proved a
permanental analog

per(A) ⩾ per(AI,I) per(AIc,Ic), (1.4)

for A HPSD, and this analog holds for A TNN. Koteljanskii [34], [35] strengthened (1.3) further by
proving that for all I, J ⊆ [n] we have

det(AI∪J,I∪J) det(AI∩J,I∩J) ⩽ det(AI,I) det(AJ,J) (1.5)

for A belonging to a class of matrices including HPSD and TNN matrices.
Hadamard–Fischer–Koteljanskii inequalities are examples of multiplicative determinantal in-

equalities. We explore generalizations of these classical results in three contexts: TP Grassmanni-
ans, finite type cluster algebras and Lorentzian matrices.

S. Fallat and C. Johnson formulated a question on description of multiplictive determinantal
inequalities through the notion of bounded ratios in [14]. Let I, I ′ ⊆ {1, 2, . . . , n} with |I| = |I ′|,
we denote the minor of A with row set I and column set I ′ as ∆I,I′(A) := detA(I|I ′).

Problem 1.1. Describe ratios R of products of minors bounded on the locus of TP elements in
GLn, where R is of the form

R = ∆I1,I′1
(A)∆I2,I′2

(A)...∆Ip,I′p(A)/∆J1,J ′
1
(A)∆J2,J ′

2
(A)...∆Jq ,J ′

q
(A) (1.6)

Over the following twenty years some partial results have been obtained for several classes of
inequalities and small dimensions [14], [13], [7], [49].

With M. Gekhtman we used the standard embedding of Mn×n into Grassmannian Gr(n, 2n)
to reformulate the above problem in terms of positive Plücker coordinates. We study the cone of
bounded ratios via planar network parameterization of TP Grassmannian Gr+(n, 2n) and show
that the cone of bounded ratios is polyhedral.

Theorem 1.1 (Gekhtman–S. [51]). For any n the cone of bounded ratios is finitely generated.

Moreover, we found new multiplicative inequalities which are not implied by quadratic inequali-
ties that follow from 3-term Plücker relations. By this we have disproved Fallat–Gekhtman–Johnson
characterization conjecture stated in [13].

Bounded ratios play a role not only in the study of classical total positivity but also have
applications in theoretical physics (e.g. in convergence of Koba–Nielsen string integrals [4]) and
connections to tropical geometry as our recent result with N.Early and M.Gekhtman illustrates.

Theorem 1.2 (Early–Gekhtman–S. [46]). We proved that the cone of bounded ratios is dual to the
cone spanned by the rays of positive tropical Grassmannian Trop+Gr(k, n) defined in [53].
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With M. Gekhtman and Z. Greenberg [27] we provided the full list of extreme ratios of the
bounded cone for Gr+(4, 8). We discuss a generalization of the Problem 1.1 to a problem of
bounded ratios in all cluster variables of the corresponding cluster algebra.

Problem 1.3. Describe ratios of products of cluster variables bounded as a real-valued function
on the totally positive locus.

In [27] we characterize the cone of bounded ratios in Problem 1.3 for full rank cluster algebras
of finite type. Generators of this cone are in bijection with mutable cluster variables, and they
correspond to inequalities obtained from exchange relations associated to vertices of the Dynkin
type quivers in the exchange graph of the cluster algebra. Moreover, generators of the cone of
bounded ratios correspond to u-variables and satisfy u-equations defined by N. Arkani-Hamed,
S. He, and T. Lam in [3].

Theorem 1.4 (Greenberg–Gekhtman–S. [27]). Let D be a full rank finite type cluster algebra as-
sociated to a Dynkin diagram D. Then

1. The generators of the cone of bounded ratios are of the form

∏
γ→ω

xω

xγx′
γ

where xγ is the variable

at the source of a Dynkin type bipartite quiver that mutates to x′
γ.

2. The generators of the bounded cone correspond to u-variables of the corresponding cluster
configuration algebra and satisfy u-equations ui +

∏
j ̸=i u

α(i,j)

j = 1 (see [3] for definition).

3. Every bounded ratio in cluster variables of D is bounded by 1.

Recently P. Brändén and J. Huh introduced Lorentzian polynomials [8], which unlocked proofs
of long standing conjectures such as Mason’s ultra-log-concavity, and forged deep connections be-
tween algebraic geometry, convex geometry, and combinatorics. In particular, Lorentzian bilinear
forms are essential in space-time geometry and relativity. The celebrated Alexandrov–Fenchel in-
equality viivjj ⩽ v2ij states that the mixed volume, restricted to two variables, has Lorentzian
signature. Coefficients of Lorentzian bilinear forms are known to satisfy a special case of the re-
verse Khovanskii–Teissier inequalities aiiakj ⩽ 2aikaij [39], as well as their variations appearing
in Brunn–Minkowski theory [24]. The Castelnuovo Severi inequality [45] used in Weil’s proof of
Riemann hypothesis for curves can also be viewed as an example of such inequality. Thus, it is
natural to extend studies of determinantal inequalities from TP and HPSD matrices to Lorentzian
matrices, which are symmetric matrices with nonnegative real entries and have at most one positive
eigenvalue.

With D. Huang, J. Huh and B. Wang [12] we describe the set of multiplicative inequalities in
entries of a Lorentzian matrices through the notion of bounded ratios. The key idea is that the set
of entry-wise logarithms of Lorentzian matrices lies between two sets of matrices parametrized by
Gromov’s δ-hyperbolic metrics on n points (for δ = 0 and δ = log 2). The Gromov tree approxi-
mation theorem implies that all three sets above are within finite Hausdorff distance, and thus all
three sets have the same cones of bounded ratios associated to them.

Theorem 1.5 (Huang–Huh–S.–Wang [12]). The cone of bounded ratios in entries of Lorentzian
matrices of order n is dual to the cut cone Cutn.

Cut cone is a well-studied object [11]. In particular, its extreme rays suggest new inequalities
stronger than Alexandrov–Fenchel inequalities. For matrix of order at least 5 we show that

a12a13a23a44a45a55 ⩽ 4a13a14a15a23a24a25

However, a result of R. Karp and C. Papadimitriou shows that unless NP=coNP, there is no
computationally tractable description of all facets of the cut cone [33]. Therefore, the theorem
above is the best description of the cone of bounded ratios one can hope for.
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2 Positivity phenomena and Immanants

Immanants are closely related to positivity phenomena and often suggest a surprising approach to
open problems on positivity. Following [41], [54], for f : Sn → C we define the f -immanant to be
the polynomial

Immf (x) :=
∑
w∈Sn

f(w)x1,w1· · · xn,wn ∈ C[x]. (2.1)

Different choices of the function f : Sn → C define various families of immanants. We are particu-
larly interested in Temperley–Lieb immanants which are known to be elements of the dual canonical
basis, see [32] for a detailed exposition. For example, Temperley–Lieb immanants are positive when
evaluated on a TP matrix, and are Schur positive when evaluated on a Jacobi–Trudi matrix.

With I. Pak we study Schur positivity of the difference of products of two skew Schur functions

sλ/ν · sµ/τ − sα/γ · sβ/δ ⩾s 0. (2.2)

Schur positivity of an expression of this form is equivalent to some inequalities between Littlewood-
Richardson coefficients. Characterizing such inequalities is a generalization of the Klyachko problem
on nonzero Littlewood-Richardson coefficients. Inequalities on Littlewood-Richardson coefficients
have many applications, for example, to understanding of containment of tensor products of irre-
ducible sln-modules Vλ ⊗ Vµ. Inspired by the theory of Temperley–Lieb immanants, we introduced
balanced products. We say that pairs {λ, µ} and {α, β} are balanced if λ◁ ∪ µ◁ = α◁ ∪ β◁, where
λ◁ = λ + ρn and ρn is a staircase partition, and µ◁, α◁, β◁ are defined similarly. In this case, we
give sufficient conditions for both Schur positivity and equality which can be verified in polynomial
time with respect to the input size. Based on the obtained inequalities, we strengthen the result of
I. Pak, G. Panova and D. Yeliussizov on large Littlewood-Richardson coefficients.

Theorem 2.1 (Pak–S. [47]). Let Pn be the set of partitions with n nonnegative parts. For every
three partitions λ, µ, ν ∈ Pn there exist α, β ∈ Pn such that cνλµ ⩽ cναβ, β ⊆ α and α/β is a disjoint
union of ribbons.

We study the defect of the Lam–Postnikov–Pylyavskyy inequality sλ∨µ ·sλ∧µ−sλ ·sµ ⩾s 0, where
partitions λ∨µ and λ∧µ are given as the union and intersection, respectively, of the corresponding
Young diagrams, and answer one of the open questions posed at OPAC 2022.

Theorem 2.2 (Pak–S. [47]). cνλ∨µ λ∧µ − cνλµ is in the complexity class #P.

Following [18], for every two partitions λ, µ ∈ Pn, we define λ∗, µ∗ ∈ Pn as follows:

λ∗
k = λk − k +#{l| µl − l ⩾ λk − k}, µ∗

l = µl − l + 1 +#{k| λk − k > µl − l}.

Fomin–Fulton–Li–Poon Conjecture [18, Conjecture 5.1] states that s∗λs
∗
µ − sλsµ ⩾s 0. We prove

this conjecture assuming that pairs of partitions {λ, µ} and {λ∗, µ∗} are balanced, which provides
a wide family of new inequalities.

Theorem 2.3 (Pak–S. [47]). Let λ, µ ∈ Pn such that λ◁∪µ◁ = (λ∗)◁∪ (µ∗)◁, then s∗λs
∗
µ−sλsµ ⩾s 0.

Another surprising application of Temperley–Lieb immanants appeared in the studies of posi-
tivity properties of Hadamard product of Jacobi–Trudi matrices. Recall that for a skew-shape λ/µ
Jacobi–Trudi matrix is defined as follows

Eλ/µ(x) :=
(
eλi−µj−i+j(x)

)ℓ(λ)
i,j=0

.

With R. Angarone, J. S. Kim and J. Oh we show that Temperley–Lieb immanants evaluated on
Hadamard product of Jacobi–Trudi matrices given by ribbon-like skew-shapes are Schur positive.

5



Theorem 2.4 (Angarone–Kim–Oh–S. [48]). Suppose λ(1)/µ(1), . . . , λ(k)/µ(k) is a collection of skew
partitions not containing a 3× 2 block of cells. Then for any Temperley-Lieb immanant Immτ , the
multi-symmetric function

Immτ

(
Eλ(1)/µ(1)

(
x(1)

)
∗ · · · ∗ Eλ(k)/µ(k)

(
x(k)

))
is Schur positive.

A. Sokal conjectured that Wagner’s theorem [55] on total positivity of Hadamard product of
triangular Toeplitz matrices can be strengthened to total monomial positivity for the Hadamard
product of Jacobi–Trudi matrices. As a corollary of the Theorem 2.4, we affirm Sokal’s conjecture
for minors given by 3× 2-avoiding skew partitions.

Theorem 2.5 (Angarone–Kim–Oh–S. [48]). Suppose λ/µ is a skew partition not containing a 3×2
block of cells. Then

det
(
Eλ/µ (x) ∗ Eλ/µ (y)

)
is Schur positive.

Moreover, we provide a manifestly positive Schur expansion for Temperley-Lieb immanants
evaluated on Hadamard product of Jacobi–Trudi matrices indexed by ribbons. For a ribbon R we

define d(I, R) =
{∑i

j=1(λj − µj) : i ∈ I
}
for any I ⊆ [n− 1].

Theorem 2.6 (Angarone–Kim–Oh–S. [48]). For any ribbons R(1), . . . , R(k), each with n rows, and
any I ⊆ [n− 1], we have

ImmτI

(
ER(1)

(
x(1)

)
∗ · · · ∗ ER(k)

(
x(k)

))
=

∑
ν1⊢m1, ..., νk⊢mk

( ∑
I1∪···∪Ik=I

f ν1(d(I1, R
(1))c) · · · f νk(d(Ik, R

(k))c)

)
sν1
(
x(1)
)
· · · sνk

(
x(k)
)
.

Here mi is the size of R(i), and f νi(A) denotes the number of standard Young tableaux with shape
νi and descent set A.

A natural generalization of the classical Hadamard–Fischer–Koteljanskyy results is the majoriz-
ing monotonicity of symmetrized Fischer’s products, which W. Barrett and C. Johnson have proved
[5] for (real) PSD matrices. Partition µ majorize partition λ of n, λ ⪯ µ if and only if λ1 +
· · · + λi ⩽ µ1 + · · ·+ µi for all i. With M. Skandera we show that these inequalities hold for TNN
matrices as well. The key idea is that we express the defect of the inequality as a positive expression
in Temperley–Lieb immanants.

Theorem 2.1 (Skandera–S. [50]). If λ ⪯ µ then for any TNN matrix A the following inequality
holds

λ1! · · ·λr!
∑

(I1,...,Ir)

det(AI1,I1) · · · det(AIr,Ir) ⩾ µ1! · · ·µs!
∑

(J1,...,Js)

det(AJ1,J1) · · · det(AJs,Js), (2.3)

where sums are over sequences of disjoint subsets of {1, . . . , n} satisfying |Ik| = λk, |Jk| = µk.

With P.Vishwakarma [52] we prove that the partial sums of Plücker relations for two weakly-
separated coordinates form a family of positive functions on Gr+(k, n). Let I, I ′ be two k-element
subsets of [n], and let I \ I ′ := [i1, i2, ..., im] and I ′ \ I := [j1, j2, ..., jm] be two ordered intervals of
elements. Then I, I ′ are weakly-separated if i1 < . . . < ia < j1 < . . . < jm < ia+1 < . . . < im (or
the same inequalities with i’s and j’s switched). The following theorem shows that partial sums of
long Plücker relations oscillate around 0 for TNN matrices.
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Theorem 2.2 (S.–Vishwakarma [52]). Let I, I ′, [i1, i2, ..., im], [j1, j2, ..., jm] be defined as above. Sup-
pose 3 ⩽ m, fix r such that 1 ⩽ r ⩽ m and let

Is = (I \ {ir}) ∪ {js}, I ′s = (I ′ \ {js}) ∪ {ir}, if 1 ⩽ s ⩽ m.

Then for the following inequalities hold for Gr+(k, n)

l∑
s=1

(−1)s+lPIsPI′s ⩾ 0, l ∈ [1,m− r], (2.4)

(−1)m−r+lPIPI′ +
l∑

s=1

(−1)s+lPIsPI′s ⩾ 0, l ∈ [m− r + 1,m].

Future research directions.

1. We conjecture that bounded ratios for Lorentzian matrices satisfy subtraction-free property
in terms of positive parametrization of Lorentzian matrices of rank at most 2. Conjecturally,
bounded ratios in Plücker coordinates of Gr+(k, n) are subtraction-free in terms of positive
parameters of the Fomin-Zelevinskyy network parametrization of Gr(k, n). Bounded ratios in
cluster variables of full rank finite type are known to be subtraction-free. These observations
suggest a promising link between cluster algebras and Lorentzian polynomials and matroid
theory which I am eager to explore.

2. I am interested to complete the characterization of partitions λ, µ, ν, τ and α, β, γ, δ such that
the following inequality holds sλ/ν · sµ/τ − sα/γ · sβ/δ ⩾s 0.

3. I am interested to complete the characterization of partitions λ, µ, ν, τ such that sλ/ν = sµ/τ .

4. For a partition λ ⊂ (n − k)k, the Chern-Schwartz-MacPherson (CSM) csm(X◦
λ) and the

Kazhdan-Lusztig (KL) class KL(Xλ) are non-homogeneous classes in H∗(Gr(k, n)). I am
interested to prove the following log-concave inequalities (verified for small partitions on a
computer): let λ, µ be partitions inside the k × (n− k) rectangle. Then

csm(X◦
λ∪µ) · csm(X◦

λ∩µ)− csm(X◦
λ) · csm(X◦

µ) ≥ 0,

and
KL(Xλ∪µ) ·KL(Xλ∩µ)−KL(Xλ) ·KL(Xµ) ≥ 0.

Here ≥ 0 means that the class is a nonnegative combination of Schubert classes.

5. I am interested to find a counterexample or a prove to Sokal’s conjecture mentioned before,
as well as study positivity properties of classical, monomial, and other immanants related to
various generalizations of Jacobi-Trudi matrices (such as Hamel–Goulden matrices).
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[16] E. Fischer. Über den Hadamardschen Determinantensatz. Arch. Math. (Basel), 13 (1908) pp. 32–40.

[17] V. Fock and A. Goncharov. Moduli spaces of local systems and higher teichmüller theory. Publications
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[44] M. Marcus. The permanent analogue of the hadamard determinant theorem. Bulletin of the American
Mathematical Society , 69, 4 (1963) pp. 494–496.

[45] J. S. Milne. The Riemann hypothesis over finite fields: from Weil to the present day [Reprint of 3525903].
ICCM Not., 4, 2 (2016) pp. 14–52.

[46] N.Early, M.Gekhtman, and D.Soskin. Bounded ratios and convergence of string integrals. Work in
progress.

[47] I. Pak and D. Soskin. Equalities and inequalities for balanced products of schur functions. Work in progress.

[48] R.Angarone, J.S.Kim, J.Oh, and D.Soskin. Hadamard product of dual jacobi–trudi matrices. Work in
progress.

[49] B. Rhoades and M. Skandera. Temperley-Lieb immanants. Ann. Comb., 9, 4 (2005) pp. 451–494.

[50] M. Skandera and D. Soskin. Barrett-Johnson inequalities for totally nonnegative matrices. Linear and
Multilinear Algebra, 1-24, (2025).

[51] D. Soskin and M. Gekhtman. On bounded ratios of minors of totally positive matrices. Linear Algebra and
its Applications, https://doi.org/10.1016/j.laa.2025.03.013 (2022).
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